博客
关于我
hdu 2899 Strange fuction
阅读量:123 次
发布时间:2019-02-27

本文共 1233 字,大约阅读时间需要 4 分钟。

基于Newton-Raphson方法的函数根求解

随着科学计算的广泛应用,高精度数值解法在解决实际问题中发挥着重要作用。本文将介绍一种高效的数值方法——Newton-Raphson方法,并展示其在函数根求解中的应用。

函数定义

首先,我们定义了一个函数 ( F(x, y) ) 如下:

[F(x, y) = x^{7} \times 6 + x^{6} \times 8 + x^{3} \times 7 + x^{2} \times 5 - y \times x]

该函数在区间 ( 0 \leq x \leq 100 ) 内定义,用于模型计算。

方法简介

Newton-Raphson方法是一种迭代优化算法,广泛应用于求解方程的根。其核心思想是通过反复逼近,逐步逼近方程的解。具体而言,算法通过选择区间内的中点并根据函数值的变化方向调整区间范围,最终收敛到方程的根。

算法步骤

1. 初始化

选择一个初始区间 ([l, r]),并计算区间的中点 ( lm ) 和 ( rm ):

[lm = \frac{2l + r}{3}][rm = \frac{l + 2r}{3}]

2. 适应性迭代

根据函数值的大小关系,调整区间范围:

  • 如果 ( F(lm, y) > F(rm, y) ),则说明 ( F(x) ) 在区间 ([lm, r]) 内单调递增,应将右端点 ( r ) 调整为 ( lm )。
  • 如果 ( F(lm, y) < F(rm, y) ),则说明 ( F(x) ) 在区间 ([l, rm]) 内单调递减,应将左端点 ( l ) 调整为 ( rm )。

3. 收敛

通过反复迭代上述步骤,逐步缩小区间范围,直到区间长度小于 ( 1 \times 10^{-7} ) 为止。

[\text{while} \ (r - l > 1 \times 10^{-7})]

代码实现

#include 
using namespace std;double solve(double l, double r, double y) { double lm, rm; while (r - l > 1e-7) { lm = (2 * l + r) / 3; rm = (l + 2 * r) / 3; if (F(lm, y) > F(rm, y)) { l = lm; } else if (F(lm, y) < F(rm, y)) { r = rm; } } return (l + r) / 2;}

适用性分析

该方法在多个实际场景中表现优异,尤其是在处理高精度需求的工程计算中。其收敛速度快、计算量小,能够在合理时间内完成复杂函数的根求解。

通过以上方法,我们可以高效地解决实际问题,得出准确的数值解。

转载地址:http://agnb.baihongyu.com/

你可能感兴趣的文章
Vue element 动态添加表单验证
查看>>
OO第一次blog
查看>>
OO第四单元总结
查看>>
OO第四次博客作业
查看>>
OO面向对象编程:第三单元总结
查看>>
Opacity多浏览器透明度兼容处理
查看>>
OPC在工控上位机中的应用
查看>>
VSCode在终端中使用yarn命令
查看>>
OPEN CASCADE Curve Continuity
查看>>
Open Graph Protocol(开放内容协议)
查看>>
Open vSwitch实验常用命令
查看>>
Open WebUI 忘了登入密码怎么办?
查看>>
open***负载均衡高可用多种方案实战讲解02(老男孩主讲)
查看>>
Open-E DSS V7 应用系列之五 构建软件NAS
查看>>
Open-Sora代码详细解读(1):解读DiT结构
查看>>
Open-Sora代码详细解读(2):时空3D VAE
查看>>
Open-Source Service Discovery
查看>>
open-vm-tools-dkms : 依赖: open-vm-tools (>= 2:9.4.0-1280544-5ubuntu3) 但是它将不会被安装
查看>>
open3d-Dll缺失,未找到指定模块解决
查看>>
openai Midjourney代理服务 gpt大模型第三方api平台汇总 支持国内外各种大模型 持续更新中...
查看>>